Decompositions of Reflexive Bimodules over Maximal Abelian Selfadjoint Algebras

نویسنده

  • G. Eleftherakis
چکیده

We generalize the notion of ‘diagonal’ from the class of CSL algebras to masa bimodules. We prove that a reflexive masa bimodule decomposes as a sum of two bimodules, the diagonal and a module generalizing the w*-closure of the Jacobson radical of a CSL algebra. The latter module turns out to be reflexive, a result which is new even for CSL algebras. We show that the projection onto the direct summand contained in the diagonal is contractive and preserves compactness and reduces rank of operators. Stronger results are obtained when the module is the reflexive hull of its rank-one subspace.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Addendum to: "Infinite-dimensional versions of the primary, cyclic and Jordan decompositions", by M. Radjabalipour

In his paper mentioned in the title, which appears in the same issue of this journal, Mehdi Radjabalipour derives the cyclic decomposition of an algebraic linear transformation. A more general structure theory for linear transformations appears in Irving Kaplansky's lovely 1954 book on infinite abelian groups. We present a translation of Kaplansky's results for abelian groups into the terminolo...

متن کامل

A characterization of Morita equivalence pairs

We characterize the pairs of operator spaces which occur as pairs of Morita equivalence bimodules between non-selfadjoint operator algebras in terms of the mutual relation between the spaces. We obtain a characterization of the operator spaces which are completely isometrically isomorphic to imprimitivity bimodules between some strongly Morita equivalent (in the sense of Rieffel) C*-algebras. A...

متن کامل

On normalizers of maximal subfields of division algebras

‎Here‎, ‎we investigate a conjecture posed by Amiri and Ariannejad claiming‎ ‎that if every maximal subfield of a division ring $D$ has trivial normalizer‎, ‎then $D$ is commutative‎. ‎Using Amitsur classification of‎ ‎finite subgroups of division rings‎, ‎it is essentially shown that if‎ ‎$D$ is finite dimensional over its center then it contains a maximal‎ ‎subfield with non-trivial normalize...

متن کامل

On Tensor Products of Operator Modules

The injective tensor product of normal representable bimodules over von Neumann algebras is shown to be normal. The usual Banach module projective tensor product of central representable bimodules over an Abelian C∗-algebra is shown to be representable. A normal version of the projective tensor product is introduced for central normal bimodules.

متن کامل

C*-algebras on r-discrete Abelian Groupoids

We study certain function algebras and their operator algebra completions on r-discrete abelian groupoids, the corresponding conditional expectations, maximal abelian subalgebras (masa) and eigen-functionals. We give a semidirect product decomposition for an abelian groupoid. This is done through a matched pair and leads to a C*-diagonal (for a special case). We use this decomposition to study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008